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MASS TRANSPORT AROUND TWO SPHERES 
AT LOW REYNOLDS NUMBERS 
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Abstract-A relaxation technique has been used to solve the conservation of species equation to obtain 
mass-transfer rates around two equally sized spheres placed parallel to their line of centers in Stokes’ 
flow. Four different sphere spacings were studied in the PecM number range of O-50. It was found that 
the overall Sherwood number for either sphere was always less than that of a single isolated sphere, and 

at low Pecltt numbers, overall Sherwood numbers of less than 2 were obtained. 
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NOMENCLATURE 

characteristic dimension in bipolar 

coordinates defined by Fig. 2; 

alR; 
dimensionless concentration, 

(C - CJ/(C, - Co); 
concentration at co; 

concentration at surface of spheres; 
characteristic dimension in bipolar 

coordinate defined by Fig. 2; 
diffusivity ; 

step size in z direction; 
step size in H direction; 

center-to-center distance between the two 

spheres; 
number of steps in the z direction; 

number of steps in the g direction; 
ml-l; 
numerical index; 
Reynolds number, 2Rli.J~; 

PeclCt number, 2RU,/6@; 
overall Sherwood number around sphere A; 

overall Sherwood number around sphere B; 
local Sherwood number, sphere A; 
local Sherwood number, sphere B; 
pressure; 
Legendre polynomial; 
sphere radius; 
outer boundary defined by Fig. 2; 
dimensionless outer boundary, rJd; 

free stream velocity; 
fluid velocity vector; 

v,, fluid velocity component in the 0 direction; 

v,, fluid velocity component in the z direction; 

v,*, dimensionless velocity, V,/U, ; 
K*> dimensionless velocity, K/U,; 

Z, bipolar coordinate. 

Greek symbols 

surface of sphere, 1 z, 1; 
fluid viscosity; 
fluid kinematic viscosity; 

bipolar coordinate; 

stream function. 

INTRODUCTION 

MASS or heat transfer involving particles at very low 

Reynolds numbers are important in such diverse fields 
as combustion of finely dispersed fuels, spray drying, 
meteorological studies, ion exchange, and gas chroma- 
tography. It is well known that the minimum possible 
rate of mass (or heat) transfer from a single sphere 
contained within an infinite stagnant fluid corresponds 

to a Sherwood (or Nusselt) number of two and that the 
Sherwood number increases with the relative velocity 
between the fluid and the solid [l-3] and with a 
decrease in the voidage in the multiparticle system [4], 
[5]. Frequently, however, in multiparticle systems such 
as fluidized beds, values of the Nusselt number less than 
two have been measured. A variety of reasons-such as 
backmixing-have been put forward to explain this 
apparent inconsistency. It does not seem to have been 
generally accepted that, for multiparticle systems, the 
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minimum theoretical value of the Sherwood (ot 

Nusselt) number can. under certain conditions. be less 
than two even though the reasoning behind this argu- 

ment has been fully documented by Cornish [6]. 

In this study the rate of mass transfer around two 

identical active spheres with their line of centers parallel 
to the main direction of flow in “creeping motion” has 

been determined by solving the diffusion equation 

numerically. The results clearly show the important 

hydrodynamic effect of particle-to-particle interaction 

on both the local and overall mass-transfer rates from 

each of the two spheres. In the limit of zero Reynolds 
number overall Sherwood numbers of less than two are 

obtained for all sphere spacings considered and 

Sherwood numbers less than two were also obtained 
for finite Reynolds numbers depending on the sphere 

spacing. It is hoped that these results for the flow 

around the simple configuration of two identical 
spheres will lend some insight into the complex 

behavior of the mass transfer process in multiparticle 

systems such as packed and fluidized beds. 

THEORETICAL ANALYSIS 

Consider the creeping flow (NRI << 1) of a Newtonian, 
incompressible fluid past two equally sized spheres of 

radius R parallel to their line of centers as shown in 

Fig. 1. We assume that the spheres are partially soluble 

urn 
- 

I 
SDhere A I Sphere B 

c=c, s g&__@ 
- c-c, I c=cs 

FIG. 1. Flow configuration 

in the fluid flowing past them so that mass transfer 

between the spheres and the fluid occurs. However, we 
further assume that the solubility is so small that the 
change in size of the spheres during a finite time period 
is negligible. For steady state conditions the continuity, 
creeping motion, and conservation of species equations 
are : 

v.v = 0 

VP = pvv 

&c = mw. 

(1) 

(2) 

(3) 

Equations (1) and (2) have already been solved by 
Stimson and Jeffrey [7] in bipolar coordinates z, 0 (see 
Fig. 2) for the case of two equal sized spheres falling 
parallel to their line of centers in an incompressible 

viscous fluid. The solution in terms of the Stokes stream 
function is given as: 

$(z. 0) = (coshz-cos(I) i:2 .&r U”(Z) v,(O) (4) 

where 

Q(z) = A,cosh(n-&+B,cosh(n+$)z (5) 

A,, = -(2n+3)K 

t2”+r)~)+(2~+ l)(e’“- 1) 

2sinh(2n+l)x+(2n+l)sinh2~. 1 (6) 
B, = (2n - 1)K 

x 2(1-e- 

[ 

(2”+1r~)+(2n+1)(1-e-2Z) 

2 sinh(2n + l)cc f(2n + 1) sinh 2~ I 
(7) 

a2U,(n+ 1)n 

K = ,/2(2n-l)(2n+1)(2n+3) 
(8) 

x = Izsl, surface of the sphere (9) 

1/,(U) = P,_,(cosO)-P,+,(cosU); 

P = Legendre function. 
(10) 

Since we require a solution for the case of two fixed 

spheres with the fluid streaming past them with a 

constant velocity U,, equation (4) can be readily trans- 

FIG. 2. Bipolar coordinates; Z, 0 

formed to our requirements by noting that in the un- 
disturbed bulk flow: 

$J = WjmYS (11) 

where y2 is the distance measured along the perpen- 
dicular to the axis of symmetry (see Fig. 2). 
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Equation (11) when converted into bipolar co- in the z and H directions are: 
ordinates yields: 

a2 sin’ OU, 
‘(” ‘) = ’ (cash z -cos e)z ’ 

1 -cosf3coshz 
vi* = 

(12) 
coshz_cosO ++(coshz-cos’V1’2 

xc [~~cosh(n-~)z+~~cosh(~+~)z] 
n 

By adding equations (4) and (12) we obtain the stream 
function for the flow past the spheres 

(cash z - cos 8)“’ 
x [P,_I(cosO)-P,+I(cosf))]---- 

sin D 
fa’ sin2 OU, 

‘(Z’8)=(coshz-cosU)2 

+(coshz-cos0)-3’2”;1 U,(z)T/,(B). (13) 

x ; [A,*cosh(n-~)z+B,*cosh(n+~)z] 

X 

[ 

~[n{~~(cosu)-cosoP~_~(coso)~ 

The velocity components V, and V, as a function of +(n+2){cos(P”+,(cosO)-P,+z(cos0)}] (15) 
the stream function are given as: 1 

I/ = _ (coshz-cosQ2 (‘ti 
2 

nz sin 0 a@ 

v = (cash z - cos 0)’ a$ 
B 

i2’sin 0 
-. 
iiZ 

I$* = 
-sin B sinh z 3 sinhz 

-(coshz-cos0)-“* 

(14a) 
coshz-cosI)-’ sinf) 

i 1 [A,* cosh(n-+)z+B,* cash@ +:)z-j 
n 

(cash z - cos @“” 
(14b) x [P,_~(costi)-P,+~(cosu)] + 

sin0 

In terms of the dimensionless velocities l/z = VJU, 
and V,* = V&W, the final expressions for the velocity 

x 1 [A,*(n-4)sinh(n-$)z+B,X(n+$) 

x(ginh(n+~)z),.[P,,_,(cosU)-P,,,o] (16) 

where 

AZ = -(2n+3)K*(2(1-e-~2”t1~“)+(2n+l)(eZ”-1)) 

B,* = (2n-l)K* (2(1--e- (2”+“2)+(2t?+ l)(l -e-*‘)) 

(17a) 

tl7b) 

n(n f 1) 

R* = ~~2(2~-1)(2~-+~~~h(2~+1)~+(2~+l)sinh2~)’ 
(17c) 

These values for the velocity distribution can then be 
used in equation (3) to solve for the concentration 
distribution around the spheres. 

In terms of the dimensionless variables K*, V,*, C* = 

C-G/C,-co, a* = a/R, and NPe= 2RU,/&@ and 
changing to bipolar coordinates, equation (3) becomes 
for axisymmetric flow: 

a 
Z cOshz--cOso aa 

Equation (18) must be solved subject to the boundary 
conditions: 

fi) 

(ii) 

(iii) very far from the two spheres, the dimensionless 
solute concentration is zero. i.e. at r = co, 
c*=o. 

FINITE DIFFERENCE APPROXI~A~ONS 

The first step in any numerical method is to replace 

Equation (18) written in finite difference form (see 

the differential equation by its finite difference approxi- 

Appendix for the detailed development of the finite 

mation. Figure 3 shows the bipolar coordinate system 
transformed into a rectangular lattice of mesh length h 
in the z direction and k in the B direction. An approxi- 

difference approximations) becomes: 

mate solution of the conservation of species equation 
(18) will be obtained at a finite number of grid points 
having coordinates z = ih, 0 = .jk where i and j are 
integers, with i going from 1 to mm1 and j from 1 to ml. 

along the axis of symmetry the concentration 

at the surface of each sphere the solute con- 

gradient is zero, i.e. at 0 = 0 and 0 = n, 

centration remains constant, i.e. at 2 = * z,, 

ac*/ao = 0, 

c* = 1, 

C$j = B,(i,j)C,*,,,j+B,(i,j)Ci*_,,j 

+R3(kj)C~j+r +B4(i,j)C~j-r (19) 
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,/=m, e=* z=-z, 1=-z, / 83 

kI 

e 

e=e, 
e=e, 

J=I 8=0” 
z=-z, i z=o 

i=l 

FIN. 3. Rectangular mesh; z. 0. 

z=z, 
i= mm, 

where B1 , B2, B3 and B4 are coefficients defined in the 

appendix. 

A numerical solution of equation (19) using relaxa- 

tion at all mesh points of the field can be obtained 

when the appropriate boundary conditions are speci- 

fied everywhere on the boundary. However, as shown 
in the appendix, special treatment is required in using 

the boundary conditions at the axis of symmetry and 

very far from the spheres (r z x). Along the axis of 

symmetry (0 = 0 and 0 = n) the following two 
equations apply: 

For 0 = 0 

Cl% = &(K?I,,I +D2(i)Ci*_l,,, +D3C&. (21) 

The coefficients Ai and Di are also defined in the 
appendix. 

Very far from the two spheres we require that the 
dimensionless concentration C* be set equal to zero. 
For numerical purposes we assume that the concentra- 

tion is equal to zero in the region outside of a spherical 
boundary of dimensionless radius R, = r/d. The outer 
boundary which encloses the two spheres when trans- 
formed into bipolar coordinates is represented by the 
equation: 

cos&) = ((rid)2itanh2 “I+ ’ cos(“). 

((r/d)2/tanh2 z”)- 1 
(22) 

Figure 2 defines the values of r and d and the dotted 
line curve in Fig. 3 represents the outer boundary in the 
z - 0 plane. The area enclosed by the curve represents 
a dimensionless concentration of zero. The solution of 
equation (22) obviously yields points that do not fall 
exactly on one of the equally spaced mesh points. When 

this occurred the concentration was set equal to zero 

at the next larger absolute value of :. This is illustrated 
in Fig. 3. The boundary equation (22) gives points D. 
F. H and I. Points D and F do not lit at a mesh point 

and, therefore, points E and G are substituted for points 

D and F, respectively and the concentration set equal 

to zero at these points instead. 

The application of the boundary conditions at the 
surface of each sphere. i.e. at I = -;?. CT,, = 1 and at 

z = +zs,CY&,,j = 1 did not lead to any added difficulty. 
Using the five boundary conditions, the finite diKerence 

equations were solved iteratively by the extrapolated 

method of Gausskjeidel. A different relaxation factor 

R was chosen by trial and error for each sphere 

spacing and Peck% number considered so as to give a 

stable and converging solution. The relaxation factor 

used varied between 1.8 and 0.034 with large relaxation 
factors required at low Peclet numbers and small 

relaxation factors required at high Peclet numbers, 

Using a mesh spacing of 3 degrees or 61 points in the 
0 direction and 41 or 43 points (depending on the 

sphere spacing) in the z direction. the I- 0 lattice 

consisted of roughly 2500 mesh points. The solution 
was assumed to have converged when the concentra- 

tions at all but ten of the mesh points were within a 
specified tolerance between two successive iterations. 

The choice of ten unconverged points was assumed 

arbitrarily. More complete details of the numerical 

procedures and a listing of the computer programs 
used can be found in reference [9]. 

DISCUSSION OF RESULTS 

Numerical solutions of the conservation of species 

equation were obtained for four different sphere 
spacings and Peclet numbers in the range of O-50. It 

was found that the quality of the solutions depended 
on (a) the number of terms used in the Stimson and 
Jeffrey velocity profile. (b) the value of R, chosen for 
the outer boundary, and (c) the value of the tolerance 
specified between two successive iterations. 

Initially the computer program was written to use a 
fixed number of velocity terms. It was found. however, 
that the solutions changed depending upon the number 
of terms used. A study was conducted as to how many 
velocity terms were needed before the solutions ceased 
to vary. These values are given for each of the sphere 
spacings studied in the table below. 

Sphere spacing Number 

2, L/R of rmws 

0.2 2.0402 35 
1.0 3.0862 8 
2.1 8.228 5 
3.0 20.140 4 
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In order to generalize the final program a routine was 
added that automatically determines the correct 
number of velocity terms needed for different sphere 
spacings. 

The value of the outer boundary should, of course, 
be chosen as large as possible since theoretically the 
concentration C* is specified as zero only at R, = co. 
However, as the outer boundary was increased the 
solution required many more iterations and it became 
virtually impossible to achieve convergence at the 
higher Peclkt numbers. The rate of convergence for a 
specified outer boundary was dependent on the sphere 
spacing and decreased as the sphere spacing was 
increased. Fortunately, however, it was found that at 
high PeclCt numbers and large sphere spacing the 
choice of the outer boundary had a much smaller effect 
on the accuracy of the solution. Thus we were able to 
obtain convergence and accurate results as well in the 
entire PeclCt number range by using smaller values of 
R, as the Peckt number and sphere spacing were 
increased. For example, at a sphere spacing of z, = 0.2 
we found that changing the outer boundary from 
R, = 14 to R, = 7 had a negligible effect on the 
numerical value of the overall Sherwood number for 
PeclCt numbers greater than 1; at a Peclkt number of 
0~1, however, a value of R, = 40 had to be used to 
obtain accurate results. At the large sphere spacing of 
z, = 3.0 we found that the outer boundary given by 
R, = 7 gave acceptably accurate results in the entire 
PeclCt number range. 

The tolerance specified between two successive 

N, = 50 

Npe = IO 

N, = I.0 

N, -0.01 

I I I I I 
30 60 90 120 150 160 

8, Degrees 

O I I I I I , 
160 I50 120 90 60 30 0 

8, Degrees 

FIG. 4(a). Local Sherwood number as a function of angle 0 FIG. 4(b). Local Sherwood number as a function of angle 0 
with Peclkt number as a parameter. with PeclCt number as a parameter. 

iterations to achieve convergence was originally set at 
10m4, in order to save computer time. However, we 
found that plots ofthe overall Sherwood number versus 
PeclCt number were not smooth but tended to oscillate 
somewhat, especially at small sphere spacing. A 
tolerance of lOa5 gave smooth curves for all of the 
sphere spacing studied and the solutions were in close 
agreement with a selected few obtained using a 
tolerance of 10-6. Therefore, a tolerance of lo-’ was 
used for all of the results reported below. 

Local Sherwood numbers 
Local values of the Sherwood number around each 

sphere of the two sphere system are closely related to 
the concentration profiles around the spheres. These 
profiles vary with PeclCt number and the center-to- 
center distance between the spheres. The local 
Sherwood numbers for each sphere depend directly on 
the concentration gradient at the sphere surface and 
were calculated using: 

Nsh,+(@) = 
- 2(cosh( - z,) - cos 0) 

a* 
(23a) 

Ns@) = 
-2(cosh(z,)-cos f3) SC* 

a* (-> az _’ 
W) 

The local Sherwood numbers obtained from equations 
(23a) and (23b) were plotted vs the angle from the 
forward stagnation point of each sphere with Peckt 
number as a parameter and are shown in Figs. 4-7(a) 
and (b). 

Ne -50 

N_ = IO 

Npc = I.0 

NPT =O.Ol 

! 

---_ ---_ 
2=_ ---. 

---_--_--_---_2% 

I- 



z,= 2.1 

N/+=50 R, =7-~ 

No+.= IO R, =7 

N,,=OOl R, =4q_ 

8, Degrees 

FIG. 5(a). Local Sherwood number as il function of angle 0 

with Peckt numhcr as a parameter 

For zs = 3.0. _!/I? = 20~14 the largest sphere spacing 

studied. Figs. 4(a) and tb) shovv that the higher the 

Pecltt number the higher the mass transfer rate 
especially around the front of the sphere. This is due 

to the decrease in thickness of the diffusional boundary 

layer as the Peclet number increases. Because the two 

spheres arc very far apart the curves for each sphere are 

I 

Sphere A 

7 I I I 

Sphere B 

N,, =50 R, =7 
6- 

z, = I.0 

-_ N p.=5O R,=7 
____ N 

c 
++.=I0 R, =7 

$ 5- 
-__ ,,, 

P? = I.0 R, = 22_ 
____ N Pe =OOl R, = 22 

l I I I I I I I I I 
0 30 60 90 120 150 1.90 

0 180 150 I20 90 60 30 0 

8, Degrees 8. Degrees 

FIG. 6(a). Local Sherwood number its a function of angle 0 PI<;. 6(b). Local Sherwood number as a function of angle 0 

with PcclCt number RS a parameter. with Pecli:t number as a parameter. 

7- r I I 
Sphere B 

I 

z =2 I 

et 
N,., 150 R, =7- 

_~~_ N,, = 10 R, =7 

4 - -- ND, = I.0 R, =7 
.j! 5 ___ N,, =OOi R, =4Q 

0 I I I 
180 150 120 90 60 30 0 

8, Degrees 

FIG. 5(h). Locd Sherwood numhcr as a function of angle 0 

with Peck number as a parameter. 

very similar and resemble the curve for a single isolated 

sphere showing a maximum Sherwood number at the 
forward stagnation point. a continuous decrease 

around the sphere, and a minimum Sherwood number 
at the rear stagnation point [lo]. However, the 

magnitude of the local Sherwood numbers, especially 
at the higher Peclet numbers. are somewhat lower for 
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7 I I I 1 I 
7 

I I I I I 

Sphere A Sphere I3 
zs= o-2 

N,, = 50 

---- N,= IO 
-_- N, = I.0 
-___ I& = 0.01 

0 30 60 120 150 IWO 

8, Degrees 

FIG. 7(a). Local Sherwood number as a function of angle 0 
with PeclCt number as a parameter. 

sphere B than for sphere A. This is because sphere A 

is in contact upstream with fresh fluid and thus more 

mass transfer takes place than downstream around 
sphere B. At a PeclCt number of 0.01 the two spheres 

show almost identical behavior and the local Sherwood 
number remains approximately constant at 2 indicating 

molecular diffusion as the sole mechanism of mass 

transfer. 

For z, = 2.1, L/R = 8.288 the local Sherwood 

number curves (Figs. 5(a) and (b)) show similar trends 
as described for Z, = 3.0. For sphere A the local 

Sherwood numbers at the forward stagnation point for 
each Peclkt number are almost identical for the two 

different sphere spacings although the Sherwood 
numbers fall off at a faster rate for the smaller spacing. 

For sphere B, however, the values of the Sherwood 
number at the forward stagnation point are appreciably 
lower at the smaller spacing but fall off much slower 

around the sphere so that they are almost the same as 
for the larger spacing at the rear stagnation point. These 
effects are due to the greater influence of the two 
spheres upon one another at the smaller spacing. 

Decreasing the sphere spacing even further to 
z, = 1.0, L/R = 3.0862 results in the curves shown in 
Figs. 6(a) and (b). For sphere A the Sherwood numbers 
at the forward stagnation point continue to remain 
about the same as for the previous spacings but fall off 
very sharply around the sphere. For sphere B the 
behavior is quite different. At the large PeclCt numbers 
(Np, = 10 and 50) the Sherwood numbers are very low 
at the forward stagnation point, rise to a maximum at 

6 z,=o.2 
N,, = 50 

r __ Npe= IO 

2 5 
___ Npe=l.O 

--_- NPe =O.Ol 

“la0 120 90 60 30 0 

8, Degrees 

FIG. 7(b). Local Sherwood number as a function of angle 0 
with Pecltt number as a parameter. 

about 130” (0 = 50”), and then fall off again as the rear 

stagnation point is reached. At the very low PeclCt 
number of 0.01, no maximum is observed and the 

Sherwood number rises continuously around the 

sphere. These effects are due to the close spacing 

between the spheres which causes the region between 
the two spheres to become very highly concentrated in 

solute so that very little mass transfer from the spheres 

can take place in this region. 

The curves for the smallest spacing studied, Z, = 0.2. 
L,‘R = 2.0402 are shown in Figs. 7(a) and (b). Here the 

spheres are almost touching and the results are affected 
accordingly. For sphere A the Sherwood number 

curves fall off very rapidly around the sphere and the 

mass-transfer rate decreases to almost nil at angles of 

about 70” and greater. For sphere B there is negligible 
mass transfer around the front of the sphere, the 
Sherwood numbers start to rise at an angle of about 
110” (0 = 709 and at Peclkt numbers of 10 and 50 reach 

a maximum and then fall again as the rear stagnation 
point is reached. The curves for the very low Pecltt 
numbers of 0.01 and 1.0 showed no maximum but 
continue to rise until the rear stagnation point was 
reached. The reason that most of the area around the 
back of sphere A and the front of sphere B did not 
contribute to mass transfer is because of the closeness 
of the two spheres which resulted in saturating the 
relatively stagnant fluid between the two spheres and 
dropping the driving force for mass transfer to zero. 
Thus the two spheres behave like a single combined 
body in the flowing fluid. This was clearly illustrated 



by the numerical values of the concentration profile 
contours obtained at this spacing. 

Ol’etd ShcmYlod t1umher.5 
The overall Sherwood numbers for each sphere is 

simply the local Sherwood number integrated over the 

surface area of the sphere and are computed from 

X 

and plotted against Peclkt number in Figs. 8-l I. 
Smooth curves were obtained by using large values of 

I 
%Ol 0 IO IO ,d 100 

Pee+ “umber. NPP 

FIG. 8. Overall Sherwood number as a function of PeclCt 
number. 

4 5, 

c I I 
6 ,L/ 

I 
N%ol I 

0 10 10 ‘0 5c 

Peclet number. 4, 

FIG. 9. Overall Sherwood number as a function of Peckt 
number. 

the outer boundary R, at low Peclitt numbers and 
decreasing the outer boundary at high PeclCt numbers 
to conserve computer time. For each spacing studied 

the overall Sherwood numbers for each sphere were 
approximately equal and constant at low Peclkt 
numbers (IV,,, < 0.1) where mass transfer was primarily 

due to molecular diffusion. At higher Peclkt numbers 

where convection becomes important the overall mass- 

transfer rate was always greater around sphere A since 

sphere A being upstream of the flow was supplied with 

fresher fluid than sphere B. 

‘Q--- - -- I 
.I c I. 4.’ IO 50 

Pec’et “urnher. N,, 

FIG. 10. Overall Sherwood number as a function of Pecltt 
number. 

FIG. Il. Overall Sherwood numhcr as a function of Peck3 
number. 

For the largest sphere spacing studied. z, = 3.0 the 
curves for each of the two spheres (Fig. 8) are fairly 
close together indicating a relatively small effect of 
particle interaction on the mass-transfer process. 
Because of the large spacing between the spheres. we 
have included for comparison in Fig. 8 some values 
computed by Yuge [ll] for mass transfer around a 
single sphere in the Peckt number range of 0.3- 10 as 
well as the asymptotic solution for very high PeclCt 
numbers obtained by Levich [I]. The agreement with 
Yuge’s values are very good and the curve for sphere A 
also appears to approach the Levich asymptotic solu- 
tion at high Peckt numbers indicating the small effect 
of particle interaction on the overall mass-transfer rate 
at this large sphere spacing. 
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As the spacing between the spheres is decreased the 

overall Sherwood numbers for both spheres A and B 

also decrease at any fixed Peclkt number showing the 

increasing effects of particle interaction on the rate of 

mass transfer. Since the results for the largest sphere 
spacing L/R = 20.14 are indicative of mass transfer 

around a single isolated sphere a comparison of Figs. 

8-l 1 show that in Stokes flow the overall mass-transfer 

coefficient around either sphere in a two sphere system 
is always smaller than that around a single isolated 

sphere. These results have been qualitatively confirmed 

by Peltzman and Pfeffer [ 121 and Chen and Pfeffer [ 131 
using an experimental two sphere system consisting of 

one active (benzoic acid) sphere and one inert (plastic) 

sphere placed either in front or behind the active sphere 
in a water tunnel. Although these experiments were 

conducted in a Reynolds number range of 8-50 and at 
very large Peclkt numbers so that the results are not 

directly comparable with this study, they did indicate 
that the overall Sherwood number around the active 

sphere in the two sphere system was always less than the 

value for a single active sphere and always decreased as 

the sphere spacing was decreased. 

At a spacing of z, = 2.1 and a Peclbt number of 0.1 
the overall Sherwood number is below the single sphere 
limiting value of 2 for both spheres A and I3 and at the 

even closer spacings of z, = 1.0 and z, = 0.2 the overall 

Sherwood number is below 2 for both spheres at a 

Peclkt number of 1.0. Looking only at sphere B the 

overall Sherwood number drops below 2 at a spacing 

of z, = 1.0 at a PeclCt number of 5 and at a spacing of 
z, = 0.2 at a PeclCt number as high as lo! Cornish [6] 

has reported the theoretical values of the Sherwood 

number for two spheres in the limiting case of zero 
PeclCt number (mass transfer by molecular diffusion 

only). Using a very large value for the outer boundary 

(R, = 40) we have computed Sherwood numbers for 

the limiting case of zero PeclCt number by setting the 
velocities T$* and V,* equal to zero. The results obtained 

from the numerical computations are compared with 

the theoretical values in the table below: 

Sphere spacing Numerical results Theoretical To,erance 

z, LIR Sphere A Sphere B values 

0.2 2.0402 1.39239 1.39231 1.3920 1O-6 
1.0 3.0862 1.54658 1.54653 1.5232 tom6 
2.1 8,288 1.80739 1.80693 1.7852 1o-5 
3.0 20.14 1.92645 1.92597 1.9056 10-5 

As can be seen from the table the numerical results 

show excellent agreement with the theoretical values 

and show without question that the overall Sherwood 
number around a sphere in a two sphere system by 

molecular diffusion alone is always less than that 
around a single isolated sphere. This is very similar to 
the well known experimental observation that the drag 

on a sphere in a two sphere system settling one on top 

of the other in an unbounded fluid in Stokes’ flow is 
always less than that of a single isolated sphere settling 
alone. The fact that the numerical results are so close to 
the theoretical values also lends further credence to the 
accuracy of the numerical results at the higher PeclCt 
numbers where no analytical solutions, and limited 
experimental data are available for mass transfer from 
a two sphere system. 

CONCLUDING REMARKS 

Numerical solutions of the mass-transfer rates 
around two equally sized spheres placed parallel to 
their line of centers in Stokes’ flow have been obtained 
for four different sphere spacings in the Peclkt number 
range of O-50. The overall Sherwood number for either 
sphere was always less than that of a single isolated 
sphere and at low Peclbt numbers, overall Sherwood 

numbers of less than 2 were obtained. Thus the effect 

of particle-to-particle interaction on the mass-transfer 
process is significant and may be the cause for some of 

the very low experimental particle-to-fluid Sherwood or 

Nusselt number data reported for fluidized beds at low 
Peclkt numbers. 
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APPENDIX 

Development of the Fide Diflbrrncr Approximations 

In Fig. 3 the dimensionless concentration at points 1.2,3.4 
can be expressed by use of Taylor series expansion in terms 
of the concentration at the central point A. 

which is also given as equation (19). in the text. where 

B,(i. i) 

I_ 1 sinh I N&r* v.* 1 

B21i. j) 
1 sinh z 

~ + _ ~___.__~~~ + ~~ 
Np,a*V.* 

’ - 
hZ 2h(cosh z - cos 0) 4h(cosh z -cos (I) I ZZ 

/? ?\ 

B,(i. i) 

rl cos 0 cash z - 1 Nr,.a*V$ 1 

Bdi, j) 

1 cos 0 cash z - 1 Np,a* l$* 

k’ 2ksinI)(coshz-cos0)+4k(coshz-cosf)) 1 

: * k2 ilc, 

c:,+, = C,T, + k $f + 2? -xi2 (Ma) 
Along the axis of symmetry we have to satisfy the con- 

dition outside the two spheres. i.e. 

;C;, k= i2Cri 
c:,_, = c,*,-k -$t -A 

2! Iv2 
LQb) 

ic* 
at O=O, ---=O 

:o 

By elimination, approximate expressions for the partial 
derivatives at point (ih.jk) can be found in terms of the five 
point values of the concentration. 

= = (C:+,,j-C,*_,,j)/2h 
?Z 

(A3) 

ic,t, 
;n 

= CC&+, - C,T, - I P f.44) 

pc.*. 
+l = (C:+1,,-?C~j+C:_,,,)/h2 (A5) 7 

C.46) 

Equation (18) (see text) can also be written as: 

?C* i2c* sinhz ?C* (cos 0 cash z) - 1 ?C* 

(?Z2 
+-_-_---___-- 

?02 
~__+~______ 

cash z - cos 0 (‘2 sm O(cosh z -cos 0) 8) 

By substituting equations (A3) to (A6) into equation (18a) 
we obtain the finite difference equation below: 

C,l; = Bi(i. j)CL i., + Bz(i.j)C,*_r,, 

(AXI 

(A9) 

(AlO) 

All) 

and between the two spheres. 

As can be seen from equation (18a) special treatment is 
required because, although ?C*/?O = 0 at 0 = 0, sin 0 also 
equals zero. Therefore. a limiting process is used to determine 
the requisite values. 

cosf)coshz-1 ?C* i*c* 
Limit ~... 

B-O sin O(cosh 2 - cos 0) if) io* 

With theinclusionof l$ = Oat 0 = Oequation(18a) becomes: 

?C* ?C* sinhz ?C* 
_+202--_-. ~~ ~~ 
iz2 coshz-1 i,_ 

By similar reasoning, for 0 = r-t equation (1 ga) becomes 

?c* cl??* sinh z iC* 
~~. +2____--_ _. 
(‘-2 ‘. ?02 coshz+l iz 

v CT* 
= $jlpc ~. .._ 

coshz+l ?Z 
(184 

Obviously these equations (18b) and (l&c) require special 
treatment because in order to expand them at 0 = 0 and 
0 = n onlv three ooints are available (see Fig, 3. uoint B). +Ba(i, j)C:j+l +&(i.j)C,T-~ (AT) _. 
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Therefore, the equations for the derivatives are given as: Similarly the substitution of eouations (A14). (A15) and (A17) 

along 0 = 0 (,j = 1) 

l!JCi: 
) = (Ci”,i.i -Ci*_,,,)/2h 

82 

L= (C?+,,, 
(‘2 

-2C :, + Ci*-,,,)/h’ 

along 0 = II (j = ml) 

ac:,, 

into equation (18~) gives the following finite difference 
equation at 0 = n: 

(A12) 
C%, = Di(i)C?+,,,i +Dz(i)C,~,,,, +&Clf,,, (A22) 

(A13) which is also given as equation (21) in the text. where 

DI (i) 

( = (Ci%i.mi -CT-,,,,)/2h 
?z 

dZC* 
$! = (C:+i,m, -2C&, +C:-,,,,)/h’. 

From equation (A3) we find for 0 = 0 (j = 1): 

?C* 

From equation (A4) we find for 0 = n (j = ml): 

a%, mi 
A = 2(C$- C&,,,)/k*. 

do* 

(A14) sinh z N,,a*V* 
___-- ’ ]:I’(A+-l) (A23) 

h2 Zh(coshz+ 1) 4h(coshz+l) / h2 k2 

(A15) Dz(i) 

(‘416) 

(Al7) The value of V,* in equations (A18) and (A22) is evaluated 
as follows: Assume SV,*/SS = 0 along the axis of symmetry 

The substitutions of equations (A12), (A13) and (A16) into 
at II = 0 and 0 = n. Also approximate c?Vz*/M as a function 

equation (18a) gives the following finite difference equations 
of the values of V,* at the interior points using (see [S]): 

atO=O: 
?V? 

C,t, = A,(i)C:+,,, +A2(i)C:-1.1 +.4,Ct2 (Al8) x 
1.1 

= A( -25K*(i, 1)+48K*(i,2) 

which is also given as equation (20) in the text, where 
- 361/,*(i, 3) + 16K*(i, 4) - 3 V:(i. 5)) (A26) 

A,(i) 

=[ 

1 sinh z 

h2 

N_a*l/;l ],j(~+“) (A19) whichgivesatfJ=O 

Zh(coshz-l)-4h(coshz-1) / h2 kZ Vz(i, 1) = 1,92K*(i, 2)- 1,44K*(i, 3) 

AZ(i) +0.64K*(&4)-0.12E*(i, 5). (A27) 

1 
=[hl I 2~(:d~~:_l)-4~~~~~~ll]lli(ifi+k4) (A20) SimilarlyalongB=n 

A3 =; 

K*(i, ml) = 1.92 E*(i. m) - 1.44 V,*(i. m - 1) 

WI) +0,64V,*(i,m-2)-0,12I$*(i,m-3). (A28) 

TRANSPORT MASSIQUE AUTOUR DE DEUX SPHERES A 
FAIBLE NOMBRE DE REYNOLDS 

RbumC-On a utilise une technique de relaxation pour resoudre l’equation de conservation des esptces 
et obtenir les flux de transfert massique autour de deux spheres identiques, avec la ligne des centres 
parallele a un ecoulement de Stokes. On considere quatre espacements differents dans un domaine de 
nombre de P&let allant de zero a 50. On trouve que le nombre de Sherwood pour chaque sphere est 
toujours inferieur a celui dune sphere unique, et on obtient aux faibles nombres de P&let des nombres 

globaux de Sherwood infirieurs a 2. 

STOFFTRANSPORT AUS ZWEI KUGELN BEI NIEDRIGEN REYNOLDS-ZAHLEN 

Zusammenfassung-Eine Relaxationsmethode wurde dazu benutzt, die speziellen Erhaltungssltze zu 
losen, aus denen man die tibergehenden Stoffmengen aus zwei Kugeln gleichen Durchmessers erhalt, 
die parallel zu ihrer Mittelachse in einer Stokes’ schen Stromung angeordnet sind. Vier verschiedene 
Kugelabstande wurden im Bereich der P&let-Zahlen von 0 bis 50 untersucht. Dabei zeigte sich, daB 
die mittleren Sherwood-Zahlen fur beide Kugeln immer kleiner waren als die einer einzelnen Kugel. Bei 

niedrigen Pellet-Zahlen wurden mittlere Sherwood-Zahlen unter 2 erhalten. 
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MACCOOGMEH ,L(BYX C@EP llPM HM3KMX YMCflAX PEtiHOJlbACA 

Amorauw- Mcnonb3yeTcfl penaKcauMoHHbtGi ~eTon petttetwtn ypaBttettMst CoxpaHeHMn t3etuecma 

fi"n O"peL,e,,eHWt MHTeHcMBHOcTM MaCCOO6MeHa B CTOKCOBCKOM nOTOKC ,WyX C+,ep OWHaKOBOrO 

pa3Mepa, nOMeLL,eHHblX ~apaJlnenbH0 JIMHMM MX ueHTl7OB. ,',CCnejJOBUIHCb WTblpe pa3nMYHblX 

paccTonHm MeKay c@epahfti B nMana3oHe wcen fleh-ne or 0 no 50. ttaiineH0, '~TO 06Luee YMCJIO 

MepByfla nnnntO6Oii M3C@epBCernaMeHblLte,'ieM 3TOme WlCnOlWlO~HOir M30JlMpOBaHHOfiC~epbl. 

&Ed HII3KMX ',MCen neK,le ~Ony'4eHblO6tLtWZ YMCJta UepByAa MeHbltie 2. 


