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Abstract—A relaxation technique has been used to solve the conservation of species equation to obtain
mass-transfer rates around two equally sized spheres placed parallel to their line of centers in Stokes’
flow. Four different sphere spacings were studied in the Peclét number range of 0-50. It was found that
the overall Sherwood number for either sphere was always less than that of a single isolated sphere, and
at low Peclét numbers, overall Sherwood numbers of less than 2 were obtained.

NOMENCLATURE

characteristic dimension in bipolar
coordinates defined by Fig. 2;

a/R;

dimensionless concentration,

(C - Ca)/(cs - Ca);

concentration at co;

concentration at surface of spheres;
characteristic dimension in bipolar
coordinate defined by Fig. 2;
diffusivity;

step size in z direction;

step size in @ direction;
center-to-center distance between the two
spheres;

number of steps in the z direction;
number of steps in the o direction;
ml—1;

numerical index;

Reynolds number, 2RU,/v;

Peclét number, 2RU,,/2;

overall Sherwood number around sphere 4;
overall Sherwood number around sphere B;
local Sherwood number, sphere A4;
local Sherwood number, sphere B,
pressure;

Legendre polynomial;

sphere radius;

outer boundary defined by Fig. 2;
dimensionless outer boundary, r/d;
free stream velocity;

fluid velocity vector;

Vo, fluid velocity component in the 8 direction;
V., fluid velocity component in the z direction;
V¥, dimensionless velocity, Vp/Uy;

V¥,  dimensionless velocity, V,/U,;

z, bipolar coordinate.

Greek symbols

o, surface of sphere, |z,|;

i, fluid viscosity;

v, fluid kinematic viscosity;
0, bipolar coordinate;

v, stream function.

INTRODUCTION

Mass or heat transfer involving particles at very low
Reynolds numbers are important in such diverse fields
as combustion of finely dispersed fuels, spray drying,
meteorological studies, ion exchange, and gas chroma-
tography. It is well known that the minimum possible
rate of mass (or heat) transfer from a single sphere
contained within an infinite stagnant fluid corresponds
to a Sherwood (or Nusselt) number of two and that the
Sherwood number increases with the relative velocity
between the fluid and the solid [1-3] and with a
decrease in the voidage in the multiparticle system [4],
[5]. Frequently, however, in multiparticle systems such
as fluidized beds, values of the Nusselt number less than
two have been measured. A variety of reasons—such as
backmixing—have been put forward to explain this
apparent inconsistency. It does not seem to have been
generally accepted that, for multiparticle systems, the
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minimum theoretical value of the Sherwood (or
Nusselt) number can, under certain conditions, be less
than two even though the reasoning behind this argu-
ment has been fully documented by Cornish [6].

In this study the rate of mass transfer around two
identical active spheres with their line of centers parallel
to the main direction of flow in “creeping motion™ has
been determined by solving the diffusion equation
numerically. The results clearly show the important
hydrodynamic effect of particle-to-particle interaction
on both the local and overall mass-transfer rates from
each of the two spheres. In the limit of zero Reynolds
number overall Sherwood numbers of less than two are
obtained for all sphere spacings considered and
Sherwood numbers less than two were also obtained
for finite Reynolds numbers depending on the sphere
spacing. It is hoped that these results for the flow
around the simple configuration of two identical
spheres will lend some insight into the complex
behavior of the mass transfer process in multiparticle
systems such as packed and fluidized beds.

THEORETICAL ANALYSIS
Consider the creeping flow (Ng, « 1) of a Newtonian,
incompressible fluid past two equally sized spheres of
radius R parallel to their line of centers as shown in
Fig. 1. We assume that the spheres are partially soluble
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FiG. 1. Flow configuration.

in the fluid flowing past them so that mass transfer
between the spheres and the fluid occurs. However, we
further assume that the solubility is so small that the
change in size of the spheres during a finite time period
is negligible. For steady state conditions the continuity,
creeping motion, and conservation of species equations
are:

V.V=0 (1)
VP = uvV?v 2

{
vie - avic (3)

Equations (1) and (2) have already been solved by
Stimson and Jeffrey [ 7] in bipolar coordinates z, 8 (see
Fig. 2) for the case of two equal sized spheres falling
parallel to their line of centers in an incompressible
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viscous fluid. The solution in terms of the Stokes stream
function is given as:

Ylz.0) = (coshz—cos0) ¥ Y Un2)V(0) (4
n=1
where
U,(z) = A, cosh(n—})z+ B,cosh(n+3)z (5)
A, = —(2n+3)K
|:2(1 —e 2rt by L Op 4 1) (e — 1)} 6
2sinh(2n+ Da+(2n+ 1) sinh 2o
B,=(2n— 1)K
5 [2(1—e(z"+1'“)+(2n+ 1)(1—672“)] (7)
2sinh(2n+ o+ (2n+ 1) sinh 2«

a*Uy(n+Dn
K= J202n—1)(2n+1)(2n+3) (®)

surface of the sphere 9

O(=|ZS|,

Vo(0) = P, (cos ) — P, (cos 0);

10
P = Legendre function. (10

Since we require a solution for the case of two fixed
spheres with the fluid streaming past them with a
constant velocity U,,, equation (4) can be readily trans-

Sphere A

o

F1G. 2. Bipolar coordinates; z, (.

formed to our requirements by noting that in the un-
disturbed bulk flow:

¥ =3U.y3 (1
where y, is the distance measured along the perpen-
dicular to the axis of symmetry (see Fig. 2).



Mass transport around two spheres

Equation (11) when converted into bipolar co-
ordinates yields:

a*sin?0U,,

ey 12
(cosh z—cos By’ (12)

¥l(z,0) =
By adding equations (4) and (12) we obtain the stream
function for the flow past the spheres

$a?sin? 0U,,

Yz, 0) =

{cosh z—cos §)*

+(coshz—cos0)™¥% 3" U,(2)V,(0).

(13)

The velocity components V, and V, as a function of
the stream function are given as:
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in the z and 6 directions are:
1—cosfcoshz
VF = ——— " +3{coshz—cos )~
coshz—cosf

x Z [ A7 cosh(n—§)z+ B¥ cosh{n+3)z]

1/2

{cosh z —cos B)*?

sind
x Y [A¥coshn—3)z+ B¥ cosh(n+3)z]

1
X[:gl*r'l'**[n{
+(n+2) {cos 0P, ((cos O) — P,..., cos())}]:l (15)

% [P, -1{cos§)— P, (cos 9)]~

(cos 0) —cos OP, -, (cos 6)}

—sinflsinhz | sinhz

Vi = - hz~cos )12
V= _(coshz—cos0)* &y (14a) ® = coshz—cos0 ° sinf (coshz —cos )
a*sin 26 x 3" [A# coshin—4)z + B¥ cosh(n +3)z]
(coshz—cos 0)% Y ' {cosh z—cos O)'/?
Vo= asing —52- (14b) X [PH-I(COS((})'—P,,+1(COS 0)]'{‘——*—5'1‘;1-2}—‘"
In terms of the dimensionless velocities V* = V,/U,, x Z [AXn—})sinh(n—1)z+ B}(n+3)
and V* = ¥,/U,, the final expressions for the velocity
x (sinh(n+3)z)].[P.-1(cos ) — P, 1(cos )] (
where
AF = —(n+IKH2(1—e™ 004 20+ 1) (e 1) (17a)
Bf = {(2n—DK* 21— @4+ 2n+ D1 —e™ ) {17b)

f J—

nn+1)

(17¢)

B V20Qn—1)(2n+1)(2n+3)(2sinh(2n+ Da+ (2n+ 1)sinh 2¢)

These values for the velocity distribution can then be
used in equation (3) to solve for the concentration
distribution around the spheres.

In terms of the dimensionless variables V¥, V;*, C* =
C—Co/Ci—Cy, a* = a/R, and Np,=2RU,/2 and
changing to bipolar coordinates, equation (3) becomes
for axisymmetric flow:

é sinf oc* 4 é sinf oc*
dz \coshz—~cosf ¢z d8 \coshz-—cosf &0

ocracH
(Vz*( +Vg*—w>. (18)

iz af

_ 3Np.a*sinf
" (coshz—cos 0

Equation (18) must be solved subject to the boundary
conditions:

(i) at the surface of each sphere the solute con-
centration remains constant, ie. at z =+ z,
C* =1,

(ii) along the axis of symmetry the concentration
gradient is zero, ie. at 0=0 and f=n,
0C*/d60 =0,

(ii1) very far from the two spheres, the dimensionless
solute concentration is zero, ie. at r= o0,
C* =0

FINITE DIFFERENCE APPROXIMATIONS

The first step in any numerical method is to replace
the differential equation by its finite difference approxi-
mation. Figure 3 shows the bipolar coordinate system
transformed into a rectangular lattice of mesh length 4
in the z direction and k in the 8 direction. An approxi-
mate solution of the conservation of species equation
(18) will be obtained at a finite number of grid points
having coordinates z = ih, 6 = jk where i and j are
integers, with i going from 1 to mm1 and jfrom 1 to ml.

Equation (18) written in finite difference form (see
Appendix for the detailed development of the finite
difference approximations) becomes:

C¥ = By(i, )CEv,j+ Bo(i, JCE 1 ;

+B3(i, NC+1 + Bali, )CY-1  (19)
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where By, B,, B; and B, are coefficients defined in the
appendix.

A numerical solution of equation (19) using relaxa-
tion at all mesh points of the field can be obtained
when the appropriate boundary conditions are speci-
fied everywhere on the boundary. However, as shown
in the appendix, special treatment is required in using
the boundary conditions at the axis of symmetry and
very far from the spheres (r ~ c0). Along the axis of
symmetry (0 =0 and 6 =) the following two
equations apply:

For0=0
CH = A()CE 1+ A)CE 1 +A45CF,. (20)
Forl=n

Gt = D1(CH 1 1 + D2()CEy p + D3 Ctn. (21

The coefficients A; and D; are also defined in the
appendix.

Very far from the two spheres we require that the
dimensionless concentration C* be set equal to zero.
For numerical purposes we assume that the concentra-
tion is equal to zero in the region outside of a spherical
boundary of dimensionless radius R, = r/d. The outer
boundary which encloses the two spheres when trans-
formed into bipolar coordinates is represented by the
equation:

((r/d)*/tanh? z,) + 1
((r/d)*/tanh? z)—1

Figure 2 defines the values of » and d and the dotted
line curve in Fig. 3 represents the outer boundary in the
z— 0 plane. The area enclosed by the curve represents
a dimensionless concentration of zero. The solution of
equation (22) obviously yields points that do not fall
exactly on one of the equally spaced mesh points. When
this occurred the concentration was set equal to zero

cosh(z) = cos(0). (22)
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at the next larger absolute value of z. This is illustrated
in Fig. 3. The boundary equation (22) gives points D,
F. H and I. Points D and F do not lic at a mesh point
and, therefore, points E and G are substituted for points
D and F, respectively and the concentration set equal
to zero at these points instead.

The application of the boundary conditions at the
surface of each sphere. i.e. at = = —z,. ¥, =1 and at
z = +z,,Gim ;= 1did notlead to any added difficulty.
Using the five boundary conditions, the finite difference
equations were solved iteratively by the extrapolated
method of Gauss—Seidel. A different relaxation factor
Q was chosen by trial and ecrror for cach sphere
spacing and Peclét number considered so as to give a
stable and converging solution. The relaxation factor
used varied between 1-8 and 0-034 with large relaxation
factors required at low Peclét numbers and small
relaxation factors required at high Peclét numbers.
Using a mesh spacing of 3 degrees or 61 points in the
() direction and 41 or 43 points {depending on the
sphere spacing) in the : direction. the z—( lattice
consisted of roughly 2500 mesh points. The solution
was assumed to have converged when the concentra-
tions at all but ten of the mesh points were within a
specified tolerance between two successive iterations.
The choice of ten unconverged points was assumed
arbitrarily. More complete details of the numerical
procedures and a listing of the computer programs
used can be found in reference [9].

DISCUSSION OF RESULTS

Numerical solutions of the conservation of species
equation were obtained for four different sphere
spacings and Peclét numbers in the range of 0-50. It
was found that the quality of the solutions depended
on (a) the number of terms used in the Stimson and
Jeffrey velocity profile, (b) the value of R, chosen for
the outer boundary, and (c) the value of the tolerance
specified between two successive iterations.

Initially the computer program was written to use a
fixed number of velocity terms. It was found, however,
that the solutions changed depending upon the number
of terms used. A study was conducted as to how many
velocity terms were needed before the solutions ceased
to vary. These values are given for each of the sphere
spacings studied in the table below.

Sphere spacing Number
2z, L/R of terms
02 2:0402 35
1-0 3-0862 8
21 8228 5
30 20-140 4




Mass transport around two spheres

In order to generalize the final program a routine was
added that automatically determines the correct
number of velocity terms needed for different sphere
spacings.

The value of the outer boundary should, of course,
be chosen as large as possible since theoretically the
concentration C* is specified as zero only at R, = 0.
However, as the outer boundary was increased the
solution required many more iterations and it became
virtually impossible to achieve convergence at the
higher Peclét numbers. The rate of convergence for a
specified outer boundary was dependent on the sphere
spacing and decreased as the sphere spacing was
increased. Fortunately, however, it was found that at
high Peclét numbers and large sphere spacing the
choice of the outer boundary had a much smaller effect
on the accuracy of the solution. Thus we were able to
obtain convergence and accurate results as well in the
entire Peclét number range by using smaller values of
R, as the Peclét number and sphere spacing were
increased. For example, at a sphere spacing of z; = 02
we found that changing the outer boundary from
Ry =14 to R, =7 had a negligible effect on the
numerical value of the overall Sherwood number for
Peclét numbers greater than 1; at a Peclét number of
0-1, however, a value of R, == 40 had to be used to
obtain accurate results. At the large sphere spacing of
z, = 30 we found that the outer boundary given by
R, = 7 gave acceptably accurate results in the entire
Peclét number range.

The tolerance specified between two successive

Sprge A

N
sh,

Local Sherwood number,

! | | | !
20 60 90 120 150 180

8, Degrees
FIG. 4(a). Local Sherwood number as a function of angle 6
with Peclét number as a parameter.
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iterations to achieve convergence was originally set at
1074, in order to save computer time. However, we
found that plots of the overall Sherwood number versus
Peclét number were not smooth but tended to oscillate
somewhat, especially at small sphere spacing. A
tolerance of 10™° gave smooth curves for all of the
sphere spacing studied and the solutions were in close
agreement with a selected few obtained using a
tolerance of 1076, Therefore, a tolerance of 1075 was
used for all of the results reported below.

Local Sherwood numbers

Local values of the Sherwood number around each
sphere of the two sphere system are closely related to
the concentration profiles around the spheres. These
profiles vary with Peclét number and the center-to-
center distance between the spheres. The local
Sherwood numbers for each sphere depend directly on
the concentration gradient at the sphere surface and
were calculated using:

N, (6) = - 2(cosh(;*zs) —cos ) ((’)F *) (233)
Ny )~ Heb=eos(2CY) gy

The local Sherwood numbers obtained from equations
(23a) and (23b) were plotted vs the angle from the
forward stagnation point of each sphere with Peclét
number as a parameter and are shown in Figs. 4-7(a)
and (b).
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FiG. 4(b). Local Sherwood number as a function of angle ¢
with Peclét number as a parameter.
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For z, = 3:0. L/R = 20-14 the largest sphere spacing
studied, Figs. 4(a) and (b) show that the higher the
Peclét number the higher the mass transfer rate
especially around the front of the sphere. This is due
to the decrease in thickness of the diffusional boundary
layer as the Peclét number increases. Because the two
spheres are very far apart the curves for each sphere are

7 T ; x
Sphere A
6 Ze=1-0 _
Np, =50 Ry =7
e Np, =10 R =
<~ 5l —_ N, =10 A, =22 ]
ew o Ng =001
§ ke
£ ™
2 ~
3 3
o
z
2 T
0 o,
B e
g —
| i \:\\~ \\\—.:
T T ]
| | | ! ]
o 30 60 90 120 150 180

8, Degrees

FI1G. 6(a). Local Sherwood number as a function of angle ¢
with Peclét number as a parameter.
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F1G. S5(b). Local Sherwood number as a function of angle 0
with Peclét number as a parameter.

very similar and resemble the curve for a single isolated
sphere showing a maximum Sherwood number at the
forward stagnation point. a continuous decrease
around the sphere, and a minimum Sherwood number
at the rear stagnation point [10]. However, the
magnitude of the local Sherwood numbers, especially
at the higher Peclét numbers. are somewhat lower for

7 T T ‘ T I

Sphere B
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. = Npe 210 Ry =T
S sl = Ng, =10 Ry =22 _|
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8, Degrees

F1G. 6(b). Local Sherwood number as a function of angle )
with Peclét number as a parameter.



Mass transport around two spheres
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F1G. 7(a). Local Sherwood number as a function of angle 0
with Peclét number as a parameter.

sphere B than for sphere A. This is because sphere A
is in contact upstream with fresh fluid and thus more
mass transfer takes place than downstream around
sphere B. At a Peclét number of 0-01 the two spheres
show almost identical behavior and the local Sherwood
number remains approximately constant at 2 indicating
molecular diffusion as the sole mechanism of mass
transfer.

For z,=21, L/R=8288 the local Sherwood
number curves (Figs. 5(a) and (b)) show similar trends
as described for z;= 30. For sphere 4 the local
Sherwood numbers at the forward stagnation point for
each Peclét number are almost identical for the two
different sphere spacings although the Sherwood
numbers fall off at a faster rate for the smaller spacing.
For sphere B, however, the values of the Sherwood
number at the forward stagnation point are appreciably
lower at the smaller spacing but fall off much slower
around the sphere so that they are almost the same as

for the larger spacing at the rear stagnation point. These -

effects are due to the greater influence of the two
spheres upon one another at the smaller spacing.
Decreasing the sphere spacing even further to
z, = 1-0, L/R = 3-0862 results in the curves shown in
Figs. 6(a) and (b). For sphere 4 the Sherwood numbers
at the forward stagnation point continue to remain
about the same as for the previous spacings but fall off
very sharply around the sphere. For sphere B the
behavior is quite different. At the large Peclét numbers
(Np. = 10 and 50) the Sherwood numbers are very low
at the forward stagnation point, rise to a maximum at
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F1G. 7(b). Local Sherwood number as a function of angle ¢
with Peclét number as a parameter.

about 130° (6 = 50°), and then fall off again as the rear
stagnation point is reached. At the very low Peclét
number of 0-01, no maximum is observed and the
Sherwood number rises continuously around the
sphere. These effects are due to the close spacing
between the spheres which causes the region between
the two spheres to become very highly concentrated in
solute so that very little mass transfer from the spheres
can take place in this region.

The curves for the smallest spacing studied, z, = 0-2,
L/R = 2-:0402 are shown in Figs. 7(a) and (b). Here the
spheres are almost touching and the results are affected
accordingly. For sphere A the Sherwood number
curves fall off very rapidly around the sphere and the
mass-transfer rate decreases to almost nil at angles of
about 70° and greater. For sphere B there is negligible
mass transfer around the front of the sphere, the
Sherwood numbers start to rise at an angle of about
110° (0 = 70°),and at Peclét numbers of 10 and 50 reach
a maximum and then fall again as the rear stagnation
point is reached. The curves for the very low Peclét
numbers of 001 and 1-0 showed no maximum but
continue to rise until the rear stagnation point was
reached. The reason that most of the area around the
back of sphere 4 and the front of sphere B did not
contribute to mass transfer is because of the closeness
of the two spheres which resulted in saturating the
relatively stagnant fluid between the two spheres and
dropping the driving force for mass transfer to zero.
Thus the two spheres behave like a single combined
body in the flowing fluid. This was clearly illustrated
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by the numerical values of the concentration profile
contours obtained at this spacing.

Overall Sherwood numbers

The overall Sherwood numbers for each sphere is
simply the local Sherwood number integrated over the
surface area of the sphere and are computed from

_ —(cosh z;— 1} (coshz,+ 1)

Nsho, = a*
ToC* sin ()
X | e df) - (36a)
o Oz |.-_. coshz,—cosfl
—(cosh z;— 1){cosh z, + 1)
NShOs = a* o
oC* sin ) 40 (36b)
X P - - )
o 0z |.—. coshz,—cos()

and plotted against Peclét number in Figs. 8-11.
Smooth curves were obtained by using large values of
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F1G. 9. Overall Sherwood number as a function of Peclét
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the outer boundary R, at low Peclét numbers and
decreasing the outer boundary at high Peclét numbers
to conserve computer time. For each spacing studied
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the overall Sherwood numbers for each sphere were
approximately equal and constant at low Peclét
numbers (Np, < 0-1) where mass transfer was primarily
due to molecular diffusion. At higher Peclét numbers
where convection becomes important the overall mass-
transfer rate was always greater around sphere A4 since
sphere 4 being upstream of the flow was supplied with
fresher fluid than sphere B.
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For the largest sphere spacing studied, z, = 3-0 the
curves for each of the two spheres (Fig. 8) are fairly
close together indicating a relatively small effect of
particle interaction on the mass-transfer process.
Because of the large spacing between the spheres, we
have included for comparison in Fig. 8§ some values
computed by Yuge [11] for mass transfer around a
single sphere in the Peclét number range of 0-:3-10 as
well as the asymptotic solution for very high Peclét
numbers obtained by Levich [1]. The agreement with
Yuge’s values are very good and the curve for sphere A
also appears to approach the Levich asymptotic solu-
tion at high Peclét numbers indicating the small effect
of particle interaction on the overall mass-transfer rate
at this large sphere spacing.
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As the spacing between the spheres is decreased the
overall Sherwood numbers for both spheres 4 and B
also decrease at any fixed Peclét number showing the
increasing effects of particle interaction on the rate of
mass transfer. Since the results for the largest sphere
spacing L/R = 20-14 are indicative of mass transfer
around a single isolated sphere a comparison of Figs.
8-11 show that in Stokes flow the overall mass-transfer
coefficient around either sphere in a two sphere system
is always smaller than that around a single isolated
sphere. These results have been qualitatively confirmed
by Peltzman and Pfeffer [ 12] and Chen and Pfeffer [13]
using an experimental two sphere system consisting of
one active (benzoic acid) sphere and one inert (plastic)
sphere placed either in front or behind the active sphere
in a water tunnel. Although these experiments were
conducted in a Reynolds number range of 850 and at
very large Peclét numbers so that the results are not
directly comparable with this study, they did indicate
that the overall Sherwood number around the active
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sphere in the two sphere system was always less than the
value for a single active sphere and always decreased as
the sphere spacing was decreased.

At a spacing of z, = 2-1 and a Peclét number of 0-1
the overall Sherwood number is below the single sphere
limiting value of 2 for both spheres 4 and B and at the
even closer spacings of z; = 1-0 and z; = 0-2 the overall
Sherwood number is below 2 for both spheres at a
Peclét number of 1-0. Looking only at sphere B the
overall Sherwood number drops below 2 at a spacing
of z; = 1:0 at a Peclét number of 5 and at a spacing of
z; = 0-2 at a Peclét number as high as 10! Cornish [6]
has reported the theoretical values of the Sherwood
number for two spheres in the limiting case of zero
Peclét number (mass transfer by molecular diffusion
only). Using a very large value for the outer boundary
(R, = 40} we have computed Sherwood numbers for
the limiting case of zero Peclét number by setting the
velocities V;* and V,* equal to zero. The results obtained
from the numerical computations are compared with
the theoretical values in the table below:

Sphere spacing

Numerical results

Theoretical

2z L/R Sphere A Sphere B values Tolerance
02 20402 1-39239 1-39231 1-:3920 1076
1-0 3-0862 154658 1-54653 1-5232 10°¢
21 8288 1-80739 1-80693 1-7852 1073
30 20-14 1-92645 192597 1-9056 1073

As can be seen from the table the numerical results
show excellent agreement with the theoretical values
and show without question that the overall Sherwood
number around a sphere in a two sphere system by
molecular diffusion alone is always less than that
around a single isolated sphere. This is very similar to
the well known experimental observation that the drag
on a sphere in a two sphere system settling one on top
of the other in an unbounded fluid in Stokes’ flow is
always less than that of a single isolated sphere settling
alone. The fact that the numerical results are so close to
the theoretical values also lends further credence to the
accuracy of the numerical results at the higher Peclét
numbers where no analytical solutions, and limited
experimental data are available for mass transfer from
a two sphere system.

CONCLUDING REMARKS

Numerical solutions of the mass-transfer rates
around two equally sized spheres placed parallel to
their line of centers in Stokes’ flow have been obtained
for four different sphere spacings in the Peclét number
range of 0—50. The overall Sherwood number for either
sphere was always less than that of a single isolated
sphere and at low Peclét numbers, overall Sherwood

numbers of less than 2 were obtained. Thus the effect
of particle-to-particle interaction on the mass-transfer
process is significant and may be the cause for some of
the very low experimental particle-to-fluid Sherwood or
Nusselt number data reported for fluidized beds at low
Peclét numbers.
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APPENDIX
Development of the Finite Difference Approximations
In Fig. 3 the dimensionless concentration at points 1, 2, 3, 4
can be expressed by use of Taylor series expansion in terms
of the concentration at the central point A.

acy  hrercy
* * DT AU . T p
Chqyj=CH+h PR YR (Ala)
. . R 1*1 /12 "’zci’.“j
Cruiy=Cl=h oy (Alb)
cr e G K PCy Az
biet = G o e (A2)
Crpon = ok L, L ECE (A2b)
A TR

By elimination, approximate expressions for the partial
derivatives at point (ih, jk) can be found in terms of the five
point values of the concentration.

acy,
p.,i = (Ci*+1,j— Ci*-l.j)/zh (A3)
cCcl
"(.,.’{')‘:(Ci),kj-é-l“ci’.kjvl)/zk (A4)
QrCH,
’(?;zi = (CH =20+ CE )k (A5)
OECH,
;"(T;g = (C:j+l _ZCifj"*' Ciikj—l)/’kz- (A6)
Equation (18) (see text) can also be written as:
Q2C* +(’ZC* sinhz  A8C*  (cosfcoshz)—1 &C*
iz? 0%  coshz—cos0 ¢z  sinf(coshz—cos() &0
* C cC*
= INp, A +V*f—>. 18a
2P coshz —cos 0( Tz 2o ) (18

By substituting equations {A3) to (A6) into equation (18a)
we obtain the finite difference equation below:
Ci).kj = Bl“ui)C‘ﬁ1.j+Bz(i~.j)Ci*—1.j

+ B3(i, )CHyv1 +Bali. )CF—y (AT)
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which is also given as equation (19), in the text, where

Bi(i. f)

[ 1 sinh z Npa*VE
h*  2h(coshz—cost)) 4h(coshz—cos )

= A8
53 (A8)
ERNE
B,l(i.))
1 N sinh z + Np a* V¥
h?  2h(coshz—cos®) 4h{coshz —cos )
= (A9)
2 . 2
ok
Bsli.))
1 . cosfcoshz—1 Np.a* V¥
k?  2ksinO(coshz—cost)) 4k(coshz—cos0)
= (A10)
2 2
)
Byl(i, )
1 cosflicoshz—1 . Npa*Vg*
k* 2ksin0{coshz—cos0) 4k(coshz—cos )
(A1)

2 N 2)
;15 ka

Along the axis of symmetry we have to satisfy the con-
dition outside the two spheres. i.e.

(".C*
at =0, ——=0
on
and between the two spheres,
aC*
at 0=nmn, —=0
a0

As can be seen from equation (18a) special treatment is
required because, although 8C*/é0 = 0 at § = 0, sin0 also
equals zero. Therefore, a limiting process is used to determine
the requisite values.

cic

cosficoshz—1 ¢C*
imit ————————— e o ——
¢~0 sin(lcoshz—cos)) ¢l

With theinclusion of ¥, = 0at 0 = O equation {18a) becomes:

o:Cc* 0XC* sinhz &C*
+ — e ———
éz? M?  coshz—1 &z

ac*

a*vx
—IN,, =

; . (18b
P coshz—1 &z (18b)

By similar reasoning, for {/ = = equation (18a) becomes

o2C* 702C* sinhz AC*

ozt T 20 coshz4l 0z

=N, o 18c)
TP coshz+1 0z (t8e

Obviously these equations (18b) and (18¢c) require special
treatment because in order to expand them at 0 =0 and
) = n only three points are available (see Fig. 3, point B).
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Therefore, the equations for the derivatives are given as:
along8=0(j=1)
ocH

5 = (Cl 11— G20 1)/2h (A12)
82CH
P”; = (CH 11 —2C K+ Cry )W (A13)
along 0 = = (j = ml)
oCKm
& - (C tm — G 1,m1)/2h (A14)
azC‘*”" * * 2
a7 = (CH,m1 — 2CEm + G mi)/R™ (A1)
From equation (A3) we find for 0 = 0 (j = 1):
a2cH
(.,02" = 2{C¥;— CH)/K>. (A16)
From equation (A4) we find for 8 = = (j = ml):
3Cim
o S = 2(Cla— Cla)/k2. (A17)

The substitutions of equations (A12), (A13) and (A16) into

equation (18a) gives the following finite difference equations
at 0 =0:

CH = A1 ()CH11 +A()CE +ACH
which is also given as equation (20) in the text, where

A(d)

(A18)

i 2 2 4
S| Lo sinhz | Ned'h: /(—2+—2> (A19)
h* 2h(coshz—1) 4h(coshz—1)|/ \K* k
A, (i)
sinh z Npa*V¥

1 2 4
=|5 - i 0
[hz * 2h(coshz~—1) 4h(coshz— 1)j|/<h2 * k2> (A20

2//1 2
A3=P -;;E‘f‘p

(A21)
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Similarly the substitution of equations (A 14), (A15) and (A17)

into equation (18¢c) gives the following finite difference
equation at § = n:
Climt = Dy()C 1 mi + D2(DCE L + D3 CHa (A22)

which is also given as equation (21) in the text, where

Dy (i)

It sinh z Np.a*V* / 2+4 (A23)
| n* 2h(coshz+1) 4hicoshz+1) |/ \h? " k2

D,(i)

1
=P+

sinh z + Np.a*V* 2+4 (A24)
2h{coshz+1) 4h(coshz+1){/ \h* k2

2 1 2
ba=/\Etie)

The value of V,* in equations (A18) and (A22) is evaluated
as follows: Assume ¢V*/00 = 0 along the axis of symmetry
at 6 = 0 and 0 = n. Also approximate 0V*/d6 as a function
of the values of V* at the interior points using (see [81}:

(A25)

o _ | (—25V%(1, 1)+ 48VX(i, 2
a0 |, ~1ant TP i, 1) +48V2%(1, 2)
—36V*(1, 3)+16V,%(i, 4)—3VX(i, 5)) (A26)
which givesat § =0
VA0, 1) = 1-92V.%(i, 2) — 1-44V.%(i, 3)
+0-64V.%(i, 4)—0-12V,%(, 5).  (A27)
Similarly along 6 = =
VXi,ml) = 192V, m)— 144V *(i,m—1)
+0:64 VX, m—2)—0-12V*(i,m—3). (A28)

TRANSPORT MASSIQUE AUTOUR DE DEUX SPHERES A
FAIBLE NOMBRE DE REYNOLDS

Résumé—On a utilisé une technique de relaxation pour résoudre ’équation de conservation des espéces

et obtenir les flux de transfert massique autour de deux sphéres identiques, avec la ligne des centres

paralléle 4 un écoulement de Stokes. On considére quatre espacements différents dans un domaine de

nombre de Péclet allant de zéro 4 50. On trouve que le nombre de Sherwood pour chaque sphére est

toujours inférieur a celui d’'une sphére unique, et on obtient aux faibles nombres de Péclet des nombres
globaux de Sherwood inférieurs a 2.

STOFFTRANSPORT AUS ZWEI KUGELN BEI NIEDRIGEN REYNOLDS-ZAHLEN

Zusammenfassung—Eine Relaxationsmethode wurde dazu benutzt, die speziellen Erhaltungssitze zu

ldsen, aus denen man die tibergehenden Stofimengen aus zwei Kugeln gleichen Durchmessers erhilt,

die parallel zu ihrer Mittelachse in einer Stokes’ schen Strémung angeordnet sind. Vier verschiedene

Kugelabstinde wurden im Bereich der Péclet-Zahlen von 0 bis 50 untersucht. Dabei zeigte sich, daB

die mittleren Sherwood-Zahlen fiir beide Kugeln immer kleiner waren als die einer einzelnen Kugel. Bei
niedrigen Péclet-Zahlen wurden mittlere Sherwood-Zahlen unter 2 erhalten.
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MACCOOBMEH JABYX C®EP IMTPU HU3KUX UYUCJIAX PEWHOJIBACA

AHHOTALUNA — VICMOBb3yeTCs peNakCAlMOHHbBIA METOA PCLICHUS YPABHEHHS COXPaHEHUS BELLECTBA

IS ONpenesieHust MHTEHCHBHOCTH MAacCOOOMEHA B CTOKCOBCKOM MOTOKE ABYX CHEP OAHHAKOBOTO

paiMepa, MOMELUCHHbLIX [MAPaife/ibHO JMHUM UX UEHTPOB. McciaemoBanuce HCThIpe pa3fiMuHbIX

paccTosHua Mexay chepamu B auanazore yucen [lexne or 0 go 50. HaitaeHo, 4To obiee vucio

Illepsyna ans 060 M3 cdhep Beeraa MeHbLE, YEM 3TO Ke YMCI0 AN OAHOH U30JTUPOBARHON cheEpDI.
Juta an3kux yucen Ilekne monyyenst oouine yucna epByna menbuie 2.



